Calibrated Teacher for Sparsely Annotated Object Detection

نویسندگان

چکیده

Fully supervised object detection requires training images in which all instances are annotated. This is actually impractical due to the high labor and time costs unavoidable missing annotations. As a result, incomplete annotation each image could provide misleading supervision harm training. Recent works on sparsely annotated alleviate this problem by generating pseudo labels for Such mechanism sensitive threshold of label score. However, effective different stages among detectors. Therefore, current methods with fixed thresholds have sub-optimal performance, difficult be applied other In order resolve obstacle, we propose Calibrated Teacher, confidence estimation prediction well calibrated match its real precision. way, detectors would share similar distribution output confidence, so that multiple same achieve better performance. Furthermore, present simple but Focal IoU Weight (FIoU) classification loss. FIoU aims at reducing loss weight false negative samples caused annotation, thus as complement teacher-student paradigm. Extensive experiments show our set new state-of-the-art under sparse settings COCO. Code will available https://github.com/Whileherham/CalibratedTeacher.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FlowBoost - Appearance learning from sparsely annotated video

We propose a new learning method which exploits temporal consistency to successfully learn a complex appearance model from a sparsely labeled training video. Our approach consists in iteratively improving an appearancebased model built with a Boosting procedure, and the reconstruction of trajectories corresponding to the motion of multiple targets. We demonstrate the efficiency of our procedure...

متن کامل

Exploiting ontology graph for predicting sparsely annotated gene function

MOTIVATION Systematically predicting gene (or protein) function based on molecular interaction networks has become an important tool in refining and enhancing the existing annotation catalogs, such as the Gene Ontology (GO) database. However, functional labels with only a few (<10) annotated genes, which constitute about half of the GO terms in yeast, mouse and human, pose a unique challenge in...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

A New Method for Auto-calibrated Object Tracking

Ubiquitous computing technologies which are cheap and easy to use are more likely to be adopted by users beyond the ubiquitous computing community. We present an ultrasonic-only tracking system that is cheap to build, self-calibrating and self-orientating, and has a convenient form factor. The system tracks low-power tags in three dimensions. The tags are smaller than AAA batteries and last up ...

متن کامل

Calibrated Full-Waveform Airborne Laser Scanning for 3D Object Segmentation

Segmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS) offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF) ALS data. FWF ALS has demonstrated enhanced performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence

سال: 2023

ISSN: ['2159-5399', '2374-3468']

DOI: https://doi.org/10.1609/aaai.v37i2.25349